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CLASSIFICATION OF FREE PIEZOCERAMIC SHELL VIBRATIONS* 

N.N. ROGACHEVA 

Free vibrations of piezoceramic shells of arbitrary shape which have first 
been polarized along one of the families of coordinates lines of the 
middle surface are examined. The various kinds of vibrations are 
classified by an asymptotic method, and approximate equations and 
boundary conditions corresponding to each kind of vibrations are obtained. 

1. We select coordinate lines a, and ap coincident with the lines of curvature on the 
shell middle surface. We consider the piezoceramic shell to be polarized first along the cc, 
lines, and the shell front surfaces to have no electrodes. 

Let us write down the initial system of equations. 
Equilibrium equations 
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Piesoelasticity relationships and electrostatics equations 
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The following notation was introduced here 
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Here and henceforth, each equation containing the subscripts i and j should be considered 
as two equations, the first being obtained if i =1, j =2 and the second t =2, j =I. The 
numbers p, p that will be used below should be considered to be equal to one. 

It is taken into account in (1.1) and (1.2) that the shells performs vibrations according 

to the law fir where f =JfT, 'c is time, and P the angular frequency of the vibrations. 
The equilibrium equations and the strain-displacement relationships are the same as in 

the theory of non-electrical shells /l/. The two-dimensional piezoelasticity relationships 
and electrostatics equations are obtained in /2/. 

The notation used agrees with that employed in /l, 2/. 
As is shown in /2, 3/, in general the two-dimensional problem for shells with preliminary 

polarization and frontal surfaces without electrodes does not split into mechanical and 
electrical problems. The system of differential equations of the theory of electroelastic 
shells is of ninth order; consequently, five boundary conditions should be satisfied on each 
edge of the shell, four mechanical that agree with the conditions taken in the theory of non- 
electrical shells, and one electrical condition. 

We will limit ourselves to considering shells with two kinds of electrical conditions at 
the edges. On the edge without electrodes a i - -a L0 the electrical induction vector component 
normal to the endface surface should be zero in a vacuum or in air Di ~0. On the edge a, =aio 
with short-circuited electrodes, the electrical potential equals zero: 9 =O. 

2. The free steady vibration spectrum will be investigated by an asymptotic method, just 
as was done in /4/. Asymptotic integration of the piezoelastic shell equations reduces, as 
a rule, to two iteration processes, the fundamental that results in a principal boundary value 
problem (PP), which consists of integrating the degenerate problem while satisfying certain 
boundary conditions (the natural frequencies are determined, in particular, from the equations 
of the principal problem), and an additional boundary value problem (AP corresponding to an 
iteration process that allows reduction of the rasidual in the remaining boundary conditions. 

The free vibrations of an arbitrary piezoceramic shell can be subdivided into quasitrans- 
verse, quasitangential, and ultra-low frequency Rayleigh vibrations. The terminology of the 
theory of non-electrical shells /4/ is retained here despite the fact that the PP and AP 
equations include electrical quantities. 

Let us make the replacement of the independent variables a ,,which is usual for asymptotic 
methods, by means of the formulas 

%=llf4t (2.1) 
Here n isthe shell relative half-thickness, R is the characteristic dimension, and t is 

the index of variability of the electroelastic state. The dimensionless coordinates El are 
selected in such a manner that differentiation with respect to them does not result in a 
substantial increase or decrease in the desired functions. 

We introduce dimensionless quantities of one order (denoted by asterisks) in place of 
the desired quantities as follows: 
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The numbers r, b, c take different values depending on the kind of vibrations. 
For each kind of vibration the asymptotic representation of the desired quantities is 

selected in such a manner that it will have physical meaning and result, to a first approxi- 
mation, in an incontrovertible system of equations in which the number of unknowns equals the 
number of equations. Moreover, the PP and AP boundary conditions should be separated in such 
a manner that the boundary conditions for the additional problem will be inhomogeneous while 
the residuals that will again appear in the boundary conditions of the partial problem after 
solution of the additional problem will be small. 

We substitute (2.1) and (2.2) into (l.l)-(1.10). We consequently obtain equations in 
which the order of each term in the equation is determined explicitly by the factor n in 
front, to a certain power. 

3. We will mean by quasiperiodic vibrations with small variability those for which the 
index of variability of the electroelastic state is less than 'it and the deflection w is 
substantially greater than the displacements a19 UP. The numbers r,c, b should be selected as 
follows: 
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r=bzc=Q (3.1) 
As a reult of substituting the asymptotic expressions (2.2) and (3.1) and replacing the 

variables (2.1), we obtain the system of PP equations from (l.l)-(1.10) after neglecting 
small terms. It includes the membrane equilibrium Eqs.(l.l) and (1.2) (in whichitisnecessary 
to set p =O,q = I), the piesoelasticity relationships and electrostatics Eqs.(1.4), (1.6)- 
(1.8), and (1.9). This system of equations is to determine the displacements, tangential 
forces and natural frequencies. It is theinitial approximation forthe fundamental iteration 
process. 

The PP describes the membrane electroelastic state. Near the edges it should be supple- 
mented by the electroelastic state with variability '10 ina direction orthogonal to the edge, 
and t(t is the index of variability in the PP) along the edge. This state of stress is 
determined by using an additional iteration process. We will write down its asymptotic 
expression and the first approximation equations. 

Near the edge a* = ai0 the dimensionless quantities with the asterisk and the dimensionless 
coordinates 
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should be introduced in place of the desired quantities. 
Taking account of (3.2) and (3.3), we obtain the following fundamental relationships of 

the additional electroelastic state to a first approximation: 

(3.4) 

The following notation is used in (3.2) and (3.4). 
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At the edge al = al0 we should set i =I, j=2 in the additional electroelastic state 
formulas (3.2)-(3.5), and i = 2,j = 1 at the edge a0 = a,,. The frequency Qin (3.5) is a 
known quantity. It is found when solving the PP. 

The nature of the solution of (3.4) depends on the sign of giO: if gi4> 0 then the 
solution damps out with distance from the edge, if gt4<o, the solution is oscillating. The 
case g,0= 0 requires special examination. 

The additional electroelastic state is described by equations analogous to the equations 
of the additional state of stress of non-electric shells. The governing equation and formulas 
for the mechanical quantities agree with known formulas of non-electric shell theory apart 
from constant coefficients. In the statics case (3.4) reduces to the equations of the simple 
edge effect for piezoceramic shells. 

The PP equations enable us to satisfy three conditions on each edge. The residuals that 
occur in the two discarded boundary conditions can be eliminated by using the arbitrariness 
of the additional electroelastic state. 

The boundary conditions for the PP and AP are obtained by the scheme presented in /5/. 
By separating the complete boundary conditions we obtain two tangential mechanical conditions 
for the PP that agree with the conditions for the membrane theory of non-electric shells, and 
one electrical condition. The solution of the AP reduces the residual in the two remaining 
mechanical non-tangential conditions. For instance, on the rigidly framed non-electrical edge 
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al = al0 the complete boundary conditions are separated as follows: 

u&") ~0, u#') = 0, D1(" = 0, I&) = _&b)), yl(~) = 0 (3.6) 

The superscripts b and c denote whether the quantities belong to the PP and AP, respectively. 
The first three conditions in (3.6) are satisfied in the PP solution and the last two boundary 
conditions in the AP solution. 

By analysing all the errors made in deriving the equations and the boundary conditions, 
it can be shown that the PP and AP are constructed with an error of the order of q'lr'. 

4. We consider quasitransverse vibrations with high variability t > 112. The asymptotic 
expression of the principal and additional problems is obtained from (2.2) for r =O,b = 2- 
4t,c = 0. Taking account of the asymptotic expression used, we obtain the PP and AP equations 
from system (l.l)-(10) with an accuracy of 0 (qf + '1*-**'). 

The system of PP equations 

differs from the corresponding system of equations ofthe theory of non-electric shells 
in the meaning of the constant coefficients al,, vi, sIIE in the elasticity relationships 
moments. They describe the bending vibrations. 

The equations of the additional problem are written as follows: 
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To obtain a closed system, (1.4), (1.6) and (1.8) must be added to these equations. 
After the principal system of Eqs.(4.1) has been integrated, the solution of the system 

of additional problem equations has been found, it is here considered that w is a known 
function found in solving the principal problem. 

The order of the system of PP equations is four, and that of the AP equations is six. 
The asymptotic separation of the boundary conditions executed by the scheme in /5/ shows that 
two non-tangential mechanical boundary conditions should be satisfied in integrating the PP 
equations on each edge, and two tangential mechanical boundary conditions and one electrical 
condition for the AP. For instance, on a rigidly framed edge al=a10 without electrodes, 
the boundary conditions are separated in the following manner: U;(b) = I), y+b) = 0, ul”’ = 0, u,(e) = 0, 

L&(C) = 0. As a result of solving the PP and the AP, the desired quantities will be determined 
with an error 0 (q’), where t> ‘I,. 

The quasitransverse vibrations with variability t =‘la are described to a first approxi- 
mation by equations which are a generalization of the dynamical equations of the theory of 
non-electric shells with high variability. These equations are obtained if we set p = 0, q = 1 
in (l.l)-(1.10) . Moreover, to a first approximation the coefficients of the first and second 
quadratic forms of the middle surface should be considered constants in al, a,. 

In the case of quasitransverse vibrations with variability t =I/* the problem does not 
separate into PP and AP even in the initial approximation; hence, all five boundary conditions 
should be taken into account on each edge when integrating the simplified system of equations 
obtained. The error of the first approximation is a quantity 0 (?+). 

5. The quasitangential vibrations are characterized by the fact that their tangential 
displacements are substantially greater than the deflections. The asymptotic expression (2.2) 
holds for the desired quantities for r = -2t, b = -2t, c = 0. It is suitable for O< t< 1. 
Asymptotic integration of (l.l)-(1.10) results in PP and AP. The system of PP equations 
consists of the equilibrium Eqs.(l.l) in which the transverse forces should be discarded, the 
piezoelasticity relationships (1.4), formulas (1.6)-_(1.8), and the tangential strain-displace- 
ment relationships in which w should be discarded. This system of equations can be considered 
as the equations of the plane theory of piezoelasticity. The system of equations is of sixth 
order, consequently, three boundary conditions should be posed on each edge. 

After the PP has been solved, all the remaining desired quantities can be predetermined 
from the remaining unused Eqs.(l.2), (l.lO), (1.5), (1.3) by using direct action. From Eq. 
(1.2), simplified by taking account of the asymptotic expression, we must find 
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and then the bending and twisting strains, the moments, and the transverse forces should be 
determined successively from (l.lO), (l.S), (1.3). The PP quasitransverse vibrations Eqs.(3.4) 
remain valid even for the PP quasitangential vibrations. The exception is the formula for 

4&V which must be taken in the following form: 

3Ai4 
4gt=-_ 

h’nfi 6”’ 

The variability of the electroelastic state described by the PP in an orthogonal 
direction to the edge is (1 -/- t)/2 (t is the variability of the electroelastic state determined 
by the AP). The boundary conditions are separated in exactly the same way as in the case of 
quasitransverse vibrations with low variability. The PP solution satisfies two tangential 
mechanical conditions and one electrical condition; the residues being formed here are 
reduced in the non-tangential mechanical conditions because of the arbitrariness of the PP. 

6. If the shell edges are free, then the shell can perform ultralow Rayleigh-type 
vibrations. An asymptotic analysis of the equations shows that the complete problem dissociates 
into the PP and AP. The asymptoticexpression (2.2) for r = 0, c = b = 2-4t holds for the PP 
quantities. Thesystemof~~equationsconsistsoftheEqs.(l.l)-(l.3) (PC 9=1) (1.5)-(1.8), 
and the equations whichreplacerelations (1.4). 

e* = 0, 0 = 0 (6.1) 
Notethattheelectricalquantitiesareonlyin (1.6)-(1.8). The remainingPPequations 

form a complete set of equations with respect to the mechanical quantities that agrees with 
the system of equations of free non-electric shells apart from a constant coefficient. Hence, 
the PP equations should be integrated in two stages: it is first necessary to find the solution 
of the mechanical problem, then to integrate (1.7) with respect to the electrical potential 
$ by considering the forces as known. The quantities Ei,D1 are defined by means of 4 and 
the forces by direct actions. 

The AP equations are the equations of a simple edge effect. They are obtained from (3.4) 
for 0 = 0. 

We separate the boundary conditions into boundary conditions for the PP and a simple 
edge effect. All the desired quantities in the boundary conditions should be represented in 
the form of a sum of PP and simple edge effect quantities, taking their asymptotic representa- 
tion into account. For instance, the boundary conditions on the edge a, = al, without 
electrodes are written in the form 

Here N,'is the reduced edge force /l/. 
The values of the simple edge effect are determined from the homogeneous equations, 

consequently, there is the scale factor no before them, where a is selected in such a manner 
that inhomogeneous boundary conditions hold for a simple edge effect. In this case a should 
be taken equal to (i-2). Then the boundary conditions for the simple edge effect take the 
form 

G? = _ Gib', Nf) = _ n*/,-,&(b) 

As was done in /l, 6/, we express T, , (” S@),Dp) by using the solution of the simple edge 
effect in terms of Gib' and ,N;'@. Hence, we obtain two mechanical boundary conditions (6.2) 
for the PP on the edge ai = aj, that agree with the corresponding conditions forthetheory 
of non-electric shells, and one electrical condition ((6.3) onthe edge with electrodes and 
(6.4) on the edge without) 

(6.2) 

(6.3) 

(6.4) 
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7. The asymptotic analysis has shown that the free vibrations of piesoceramic shells 
with preliminary polarization along the a,-lines with frontal surfaces without electrodes can 
be subdivided into 1) quasitransverse with low variability (O< t<‘ll). 2) quasitransverse 
with high variability ('I,< t< I), 3) quasitransverse with variability t = Ill, 4) quasitangential 

(0 < t< i), and 5) ultralow frequency of Rayleigh type (06 t(l/*). 
Each of these types of vibrations is described by a corresponding set of equations. Such 

a classification is physically conceivable and considerably simplifies the calculation of the 
natural frequencies and the other desired quantities. 

We note that for the same classification of the free vibrations as in the theory of non- 
electric shells, the systems of principal and additional boundary value problem equations 
differ qualitatively fromthe corresponding non-electric shell problems in the high order of 
the systems of equations, the large number of initial quantities, and the boundary conditions. 
Hence, the classification obtained forthe free vibrations of piezoceramic shells should be 
considered as a generalization of the classificationforthe free vibrations of non-electric 
shells. 
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DIFFERENTIAL GAMES WITH VARIABLE STRUCTURE, WITH A GROUP 
OF PURSUERS GHASING A SINGLE TARGET* 

K.V. DEMIDOV 

Differential games with variables structure /l/ is which m pursuers chase 
a single target are considered. Sufficient conditions are given for the 
pursuit problems in such games to be solvable. Strategies leading to 
capture are devised. An example of a game for which the sufficient 
conditions proposed are essential, is given. 

Let the motion of the i-th object (l=i,...,m) prior to switchover to be described by the 
following equation: 

z:(l) = ck' (2) ,Y) +#' ("\I') - g:'(u), 

,:(n (0) = xi0 

t E (0, ri) (1) 

and after the switchover by 

,;(P) = CP' (t)ziS) + @' (up') -gY' (u), t E (Ti,+ 00) (2) 

Z*(*) (7i) = Bi (Ti) Q(l) (Ti) 
% Here Xi(l) E R , q@) E R mf , Ci(l) (t) and CL(*) (t) are continuous ai x ai - and mi Xmi matrices 

,,W 
respectively, the matrix Ei(t) is also continuous and of dimension mixni, u,(j)Epi(j)c R ' , VE 

QCRq,Q,Pi(j'(j = 1.2) are non-empty convex compacta. The functions fiLi), gi(j) (i = 1 1 . . ., m;j = 1.2) 
depend continuously on their arguments. We specify, in the Euclidean space Rmi,the terminal 

sets li= M$+ Mi', where Mi' is a linear subspace of Rm', &fi* is a convex compactum from the 
orthogonal complement Li' to the subspace M$. 
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